
Three years experience with
a tree-like shader IR

Ian Romanick
ian.d.romanick@intel.com
1-February-2014

2

Agenda

• Background

• Problems with current IR

• Steps towards a better IR

3

Background

• In 2010, Mesa's GLSL compiler was in dire shape

4

Background

• Complete compiler re-write
• “Advanced Compiler Design and

Implementation” by Steven Muchnick
• “A Retargetable C Compiler: Design and

Implementation” by David Hanson

5

Tree-like IR – Expressions

class ir_rvalue : public ir_instruction {
 const struct glsl_type *type;
};

class ir_expression : public ir_rvalue {
 ir_expression_operation operation;
 ir_rvalue *operands[4];
};

6

Tree-like IR – Expressions

min

max

0.0 add

a mul

b c

1.0

7

Tree-like IR – Expressions

min

max

0.0 add

a mul

b c

1.0 MAD_SAT …, b, c, a

8

Tree-like IR – Expressions

min

max

0.0 add

amul

b c

1.0 MAD_SAT …, b, c, a

9

Tree-like IR – Expressions

max

min

1.0 add

amul

b c

0.0 MAD_SAT …, b, c, a

10

Tree-like IR – Expressions

void main()
{
 x = a * b;
 …
 y = x + c;
 …
 gl_Position = max(0., min(1. y));
}

11

Tree-like IR – Expressions

class ir_rvalue : public ir_instruction {
 const struct glsl_type *type;
};

class ir_expression : public ir_rvalue {
 ir_expression_operation operation;
 ir_rvalue *operands[4];
};

class ir_dereference : public ir_rvalue { };

class ir_dereference_variable : public ir_dereference {
 ir_variable *var;
};

12

Tree-like IR – Expressions

• Currently three kinds of r-value:
• Expression
• Variable dereference
• Constant

13

Tree-like IR – Assignments

class ir_assignment : public ir_instruction {
 ir_dereference *lhs;
 ir_rvalue *rhs;
 ir_rvalue *condition;
 unsigned write_mask:4;
};

14

Memory and registers

• Put all variables in one of two categories:
• Anything that is or has an array → lay it out in memory like a

UBO
• Anything else → assign it one or more fake registers from an

infinite register pool
• Also include swizzle information on register usage

15

Memory and registers

class ir_register : public ir_rvalue {
 unsigned reg;
 ir_swizzle_mask swizzle;
};

16

Flat-land

class ir_calculation : public ir_instruction {
 ir_register lhs;
 ir_expression_operation operation;
 ir_register operands[4];
 unsigned write_mask:4;
};

17

Flat-land

• Connect definitions with uses via “simplified” ud-chains

18

Flat-land

• Connect definitions with uses via “simplified” ud-chains

R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
computing static single assignment form and the control dependence graph.
ACM Transactions on Programming Languages and Systems, 13(4):451-490,
Oct 1991.

19

UD-Chains

 if (condition) {
 x = dot(normal, eye_vector);
 } else {
 x = dot(normal, light_vector);
 }

 x = clamp(x, 0.0, 1.0);

20

Other dirty laundry

• No explicit basic blocks

• No high-level IR for switch-statements

• Explicit AST

Three years experience with
a tree-like shader IR

Ian Romanick
ian.d.romanick@intel.com
1-February-2014

2

Agenda

• Background

• Problems with current IR

• Steps towards a better IR

3

Background

• In 2010, Mesa's GLSL compiler was in dire shape

Technically supported GLSL 1.20, but ma ny shaders failed to compile.

Written using a custom parser generator... only one person in the world
had any idea how it work

It used a stack-like register set... 80387 anybody?

No hope of getting GLSL 1.30 or reasonable optimizations done in any
desirable timeframe.

In fairness Michal Krol wrote it as an undergrad thesis project, and it
was pretty amazing in that light.

4

Background

• Complete compiler re-write
• “Advanced Compiler Design and

Implementation” by Steven Muchnick
• “A Retargetable C Compiler: Design and

Implementation” by David Hanson

Muchnick book published just before SSA became mainstream.

Hanson uses a separate machine description language to generate
least-cost code generators using a fairly sophisticated dynamic
programming technique.... this wants to have as much information
about how intermediate values are consumed as possible.

It also wants to be integrated with CSE and register allocation.

5

Tree-like IR – Expressions

class ir_rvalue : public ir_instruction {
 const struct glsl_type *type;
};

class ir_expression : public ir_rvalue {
 ir_expression_operation operation;
 ir_rvalue *operands[4];
};

We had three visions for this:

 1. Be able to create a machine description language to ease
supporting new hardware (new chips in the same family or new
families).

 2. Be able to easily recognize complex patterns to generate optimal
instruction sequences.

 3. Be able to easily drop in new optimization passes that would
operate independently of other passes.

6

Tree-like IR – Expressions

min

max

0.0 add

a mul

b c

1.0

7

Tree-like IR – Expressions

min

max

0.0 add

a mul

b c

1.0 MAD_SAT …, b, c, a

The compiler detects several sequences like this:

 max(0, min(1, …) → saturate

 add(mul(..., …), …) → MAD

 various combinations → LRP

Algebraic optimizations operate similarly

 pow(2., x) → ex2(x)

GPU instruction sets are generally very regular and there is no complex
addressing (in shaders or in the GPU instruction sets), so we don't
actually need most of this potential.

8

Tree-like IR – Expressions

min

max

0.0 add

amul

b c

1.0 MAD_SAT …, b, c, a

And all of the other possible rotations of the tree.

9

Tree-like IR – Expressions

max

min

1.0 add

amul

b c

0.0 MAD_SAT …, b, c, a

What about tree sequences that result in multiple (or many!)
instructions?

The code generator has to manage generating and tracking
intermediate values. This is a hassle.

What about CSE?

Forget about it.

And there might be swizzles in there too.

I don't think the code currently handles it very well if there's a
swizzle between the add and the multiple

10

Tree-like IR – Expressions

void main()
{
 x = a * b;
 …
 y = x + c;
 …
 gl_Position = max(0., min(1. y));
}

Instead of a single tree with all the subexpressions, you have a forest
of trees to generate the final result.

A transformation pass called “tree grafting” tries to combine disjoint
trees into a single tree.

11

Tree-like IR – Expressions

class ir_rvalue : public ir_instruction {
 const struct glsl_type *type;
};

class ir_expression : public ir_rvalue {
 ir_expression_operation operation;
 ir_rvalue *operands[4];
};

class ir_dereference : public ir_rvalue { };

class ir_dereference_variable : public ir_dereference {
 ir_variable *var;
};

More complex dereferences (e.g., arrays or structures) involve more
nodes in the tree.

Lots of pointers → huge memory usage

Some games have trouble compiling all of their shaders on 32-bit
machines due to the memory usage.

Walking trees is not very cache friendly, and we have many
independent optimization passes.

Code generation is difficult because instructions are generated bottom-
up. The recursive process has to pass instructions back up the tree so
that they can be modified.

In the previous example, the add would notice the multiply “below”
it, and generate the MAD. This would get passed back up to the
min/max nodes to generate the _SAT modifier.

12

Tree-like IR – Expressions

• Currently three kinds of r-value:
• Expression
• Variable dereference
• Constant

Each of these is a subclass of ir_rvalue.

ir_dereference can be an ir_dereference_variable or array / structure
dereference.

ir_dereference_variable is used for temporaries, uniforms, attributes,
varyings, and fragment outputs.

13

Tree-like IR – Assignments

class ir_assignment : public ir_instruction {
 ir_dereference *lhs;
 ir_rvalue *rhs;
 ir_rvalue *condition;
 unsigned write_mask:4;
};

The assignment node has pretty much the expected elements.

One odd bit is the condition field

We intended this to allow every assignment to possibly be a
conditional assignment.

Since the RHS is potentially a giant, complex tree, this has dubious
merit in practice.

14

Memory and registers

• Put all variables in one of two categories:
• Anything that is or has an array → lay it out in memory like a

UBO
• Anything else → assign it one or more fake registers from an

infinite register pool
• Also include swizzle information on register usage

Keep a mapping from fake register number to the ir_variable

The mapping requires storage, but it is much smaller than the
ir_dereference system for 3 reasons:

1. One mapping per variable instead of per access of the variable.

2. Generated temporaries don't need a mapping or an ir_variable.

3. After linking, the mapping can be freed.

Keep a mapping from a base address to the ir_variable

Arrays are always accessed by loads / stores that cannot appear in
trees.

Perform two related optimization passes:

Kill redundant loads (and stores) from arrays with constant indices

If all of the accesses have constant indices, kill the mapping

In conjunction with the existing lowering passes, this should keep
parity with today

It's also worth noting that we could treat ir_constant the same way

Registers can be generated directly from the AST, and the whole
ir_dereference class hierarchy can die.

15

Memory and registers

class ir_register : public ir_rvalue {
 unsigned reg;
 ir_swizzle_mask swizzle;
};

This still includes type information from ir_rvalue.

On LP64 systems, this is the same size as ir_dereference_variable, but
it is larger on LP32.

The advantage is you only need one of them, and you no longer
need ir_swizzle either.

We're reducing the depth of the trees.

16

Flat-land

class ir_calculation : public ir_instruction {
 ir_register lhs;
 ir_expression_operation operation;
 ir_register operands[4];
 unsigned write_mask:4;
};

You can almost smell the transition to SSA coming...

There are other ir_rvalues and related things that need to be handled

ir_call – Not really an ir_rvalue, but it comes into play

ir_texture – We'll likely want to change these to behave more like
the new ir_calculation instructions... probably extend ir_call for
“intrinsic” operations. Existing texture operations are pushing the
limits of fitting everything in a fixed set of operands.

All three might even end up with a new, shared base class.

But we've lost some information here, and we use that information for
various optimization passes and, as previously noted, for some code
generation.

We no longer have any information about how values are consumed.

Even if we generate MAD_SAT directly while creating ir_calculation,
later optimizations passes may make new opportunities available.
This is especially true for LRP.

We could go back to ir_expression, do tree grafting, come back to
ir_calculation, etc... YUCK!

17

Flat-land

• Connect definitions with uses via “simplified” ud-chains

18

Flat-land

• Connect definitions with uses via “simplified” ud-chains

R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
computing static single assignment form and the control dependence graph.
ACM Transactions on Programming Languages and Systems, 13(4):451-490,
Oct 1991.

SSA doesn't eliminate the need for UD-chains

It reduces the need, and it provides a number of simplifying
assumptions that aid construction.

For “simplified” ud-chains we really need to know cases when the
linkage is strictly forward within a basic block

This can be generated directly in the transition from tree to flat.

It can also be updated using very similar code to the tree-grafting
pass.

19

UD-Chains

 if (condition) {
 x = dot(normal, eye_vector);
 } else {
 x = dot(normal, light_vector);
 }

 x = clamp(x, 0.0, 1.0);

With or without SSA, UD-chains help us move the clamp inside the
branches to generate DP3_SAT.

20

Other dirty laundry

• No explicit basic blocks

• No high-level IR for switch-statements

• Explicit AST

With the transition to flat-land, we also want to track basic blocks
explicitly. Without trees, keeping BBs up to date when code changes
should be easier. This was previously very annoying with trees.

We also lack an explicit IR for switch-statements. Instead complex
sequences of if-statements are generated. On many GPUs better code
can be generated if the switch variable is uniformly constant. This
hasn't been high-priority yet due to so few (i.e., zero) applications
using switch-statements.

When we started the new compiler, all generated files were tracked in
source control. Due to the pain caused by this, we wanted to make as
few changes to glsl_parser.y as possible. Since we don't do that, we
should get rid of the explicit AST generation.

	This is an Example of a Presentation Title Flowing on to Three Lines
	Slide 2
	Basic Text
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	This is an Example of a Presentation Title Flowing on to Three Lines
	Slide 2
	Basic Text
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

