
Simulation to Aid Developing Software
for Hardware

31-January-2016

Ian Romanick

FOSDEM 2016

2

Software and Services Group
2

Agenda

What

Why

How

Not so much who, when, or where

3

Software and Services Group
3

What is simulation?

4

Software and Services Group
4

What is simulation?

How does it relate to emulation?

People often use “emulation” and “simulation” interchangeably, but I believe they
are very different beasts. Emulation, especially of vintage computer systems is
quite popular these days.

Let's start by thinking about emulation, and then think about how simulation
differs.

5

Software and Services Group
5

What is emulation?

Wikipedia says:

...imitation of a computer or other electronic system with the

help of another type of computer/system.

Not terribly helpful

This is a completely accurate definition. It is perhaps a bit too broad, and it really
fails to capture the essence of what emulation is.

6

Software and Services Group
6

What is emulation?

Wikipedia says:

...imitation of a computer or other electronic system with the

help of another type of computer/system.

More useful:

Use of one type of computer / system to replicate the user

experience of another type of computer / system.

The fundamental focus of many emulators is to reproduce the user experience of
some other computer or electronic system. Our definition really needs to
embody that.

7

Software and Services Group
7

Characteristics emulation

Exact (as much as possible) behavioral replication of the original

system

•Performance

•Visuals

•Audio

•Input methods

I believe these are the four most important areas that an emulator must faithfully
reproduce.

For many applications performance is of equal or even greater importance than
other concerns. If a game system emulator fails to hit the target framerate, it
doesn't matter how faithfully the graphics or sound is reproduced. The system
has failed.

8

Software and Services Group
8

Canonical example: MAME

Exact

MAME is probably the quintessential emulator.

It also provides some representative examples of the difficulty of “exact
behavioral replication” of the original.

The classic Star Wars arcade game is difficult in two ways. First, it uses a vector
display. Now vector displays are all but extinct. Unlike a CRT that scans the
electron beam in a left-to-right-top-to-bottom fashion, a vector display scans in
arbitrary direction to create the display.

In addition, the game uses a flight yoke for input. There is nothing quite like this
available for a modern PC.

So... you have to try to recreate the experience with the I/O technologies
available. Input systems are remapped, and great care is taken to reproduce the
look of a vector display on a CRT or LCD. MAME developers have put quite a bit
of effort into this.

9

Software and Services Group
9

What is simulation?

Wikipedia says:

...an attempt to model a real-life of hypothetical situation on

a computer so that it can be studied to see how the system

works.

This definition is really has things like simulating the formation of the universe or
diffusion of gasses in mind, but it's spot on for our purposes.

We want to study the hardware / software system to understand how it works...
or often during development, how it fails to work,

10

Software and Services Group
10

What is simulation?

Chief characteristic of a simulator:

Introspection

Fundamentally, simulation and emulation differs in the target

audience: developers or end users.

What's important to note is we don't really care about the user experience.
Performance and reproduction of kooky I/O systems aren't even a concern.

Instead, we want to peer behind the curtain to see the inner clockwork.

11

Software and Services Group
11

Why is simulation useful?

Chief characteristics of real hardware:

Misprogram it, and it will punish you

Programming hardware is fundamentally hard. You do a bunch of work to make
an offering to the dragon, and it either continues sleeping or it burns your village
down.

Especially in the presence of hardware bugs, the difference between an
accepted offering and running and screaming is subtle and illogical.

12

Software and Services Group
12

Why is simulation useful?

Chief characteristics of real hardware:

Misprogram it, and it will punish you

• System crash

• Blank screen

• Damage to physical device

• …

• Little of no feedback of what went wrong

13

Software and Services Group
13

Why is simulation useful?

Chief characteristics of real hardware:

Misprogram it, and it will punish you

Little or no introspection

Even in cases where the is introspection available, it is generally focused on
performance characteristics of the system. This is useful for application
developers, but it's not as interesting for driver developers.

When the hardware has been misprogrammed, the introspection capabilities that
do exist will often fail.

14

Software and Services Group
14

Why is simulation useful?

Chief characteristics of real hardware:

Misprogram it, and it will punish you

Little or no introspection

Physical device must be available

Oh yeah, to work on a physical device, you have to have the physical device!

I have a Broadwell GPU in this laptop, but if I need to fix a driver bug on an older
or newer chip, I have to go dig a different laptop out of a drawer. Right now, that
drawer is about 8,000 km away. Wait a moment, I'll be right back... lol.

15

Software and Services Group
15

How?

Generate software directly from HDL

The HDL is already used to synthesize the physical device, with some work you
can synthesize another piece of software the reproduces the behavior of the
physical device.

Simple, we're done. Right?

16

Software and Services Group
16

How?

Generate software directly from HDL

•Requires the HDL be available

•Generally very slow

•More easy to update for new hardware

•Usually very close to real hardware behavior

Probably impractical for most people

Assuming you can get access to the HDL... show of hands, who has access to
the HDL for any GPU?

The HDL is with logic gates in mind, so a simulator generated from the HDL will
generally replicate the behavior at or very near the gate level. This results in a
lot of CPU instructions to do even a very simple operation. S-L-O-W. A single
frame that takes 10ms on real hardware may take minutes or hours to simulate.

But... there are many advantages to this method.

All of the hardware companies have simulators generated from HDL. We have
one for all our GPUs, and the simulator is available long before the physical
device is, so this is a critical part of bringing up support for new hardware in time
for launch.

For most things beyond bring up, this simulator is just too painful to use.

17

Software and Services Group
17

How?

We can start by dipping our toes in the simulated water...

NOTE: This is supposed to be an animated GIF of simulated water being poured
into a container. This probably won't make it into the exported PDF.

18

Software and Services Group
18

“Lite” simulation: Validation

Introspection shim layer between software and hardware

•Track access to hardware

• May require source code instrumentation

•Replicate hardware state machine

•Provide feedback

We can start by dipping our toes in the simulation waters by running on real
hardware but also partially simulating the internal state of the hardware.

I'll call this a validator. We just want to ensure that all of the stuff sent to the
hardware is valid.

19

Software and Services Group
19

“Lite” simulation: Validation

Prevent direct software access to hardware

Otherwise the simulator can't see the hardware accesses

Before:

// Enable copper and display DMA
custom­>dmaconr = 0xD018;

After:

// Enable copper and display DMA
WRITE_WORD(custom, dmaconr, 0xD018);

I actually started down this road last summer. July was the 30th anniversary of
the Amiga computer, so I started playing around with some coding projects. I
actually got my start writing demos on the Amiga... long ago, so it was fun to go
back to it for a bit.

The Amiga has a set of memory mapped registers. All of the registers are read-
only or write-only. Poking values in the registers make things happen. In
addition, it has a coprocessor called the copper that can perform register writes
synchronized to CRT beam positions.

A common thing to do is enable DMA for the copper and the display. To validate
this, we have to replace the direct write with an indirect access.

(NOTE: This code has at least two bugs... more on that later.)

20

Software and Services Group
20

“Lite” simulation: Validation

#ifdef SIMULATION
#define WRITE_WORD(base, field, value) \
 write_u16(base, \
 offsetof(struct Custom, field),\
 value);
#else
 do { (base)­>field = value; } while(0)
#endif

In a “release” build, this becomes a direct write.

In a “simulation” build this goes through an intermediate step that updates the
internal state machine of the simulator.

21

Software and Services Group
21

“Lite” simulation: Validation

// Enable copper and display DMA
WRITE_WORD(custom, dmaconr, 0xD018);

So, we take this bit of innocuous looking code and run it through the simulator...

The high-order DMACON bit selects whether the other bits turn on or turn of
particular DMA channels. The remaining bits select the channels to be modified.

22

Software and Services Group
22

“Lite” simulation: Validation

// Enable copper and display DMA
WRITE_WORD(custom, dmaconr, 0xD018);

Simulator result:

Write to read­only register.

Riiiiight.. there are two DMA control registers. One is read-only, and the other is
write-only. DMACONR is the read-only register, so we'll wonder why the display
didn't come on.

So, we'll fix that...

23

Software and Services Group
23

“Lite” simulation: Validation

// Enable copper and display DMA
WRITE_WORD(custom, dmacon, 0xD018);

24

Software and Services Group
24

“Lite” simulation: Validation

// Enable copper and display DMA
WRITE_WORD(custom, dmacon, 0xD018);

Simulator result:

Write to read­only DMACON bit.

In addition to bits for various DMA channels, there are some read-only,
informational bits. This value mask is trying to turn on the blitter busy flag. This
won't have any affect, but it's probably not what you intended.

25

Software and Services Group
25

“Lite” simulation: Validation

// Enable copper and display DMA
WRITE_WORD(custom, dmacon, 0x8018);

Simulator result:

Fix that, and the simulator is happy.

Now, this is a very simple example that doesn't require the simulator track any
state. It just had to look at the registers and the values.

That was enough to help find some software errors. How many times have you
spent hours tracking down a bug that was just a one character typo?

26

Software and Services Group
26

“Lite” simulation: Validation

WRITE_SHORT(&custom, bltcon0, BC0F_SRCA |
 BC0F_DEST |
 A_TO_D);
WRITE_SHORT(&custom, bltcon1, 0);
WRITE_SHORT(&custom, bltsize, (16 << 6) | 8);
WRITE_LONG(&custom, bltapt, src1_addr);
WRITE_LONG(&custom, bltdpt, dst1_addr);
WRITE_SHORT(&custom, bltamod, 0x0000);
WRITE_SHORT(&custom, bltdmod, 0x0000);

Here's a more complex example.

The Amiga has a hardware blitter, and this code sets up a simple source-to-dest
copy of a 16 line by 8 word block.

The source and destination pitch is determined by the combination of the blit
width and the “modulus” registers.

But there's a big problem here. Writing the size register cause the blit to start,
and this code is trying to program the pointer and mod registers after
programming the size. This may not necessarily be a bug... you might want to
use values left from the previous blit.

However, programming any blitter registers while the blitter is busy will probably
not do what you wanted because it will cause the hardware to start using the new
values in the middle of the blit.

27

Software and Services Group
27

“Lite” simulation: Validation

WRITE_SHORT(&custom, bltcon0, BC0F_SRCA |
 BC0F_DEST |
 A_TO_D);
WRITE_SHORT(&custom, bltcon1, 0);
WRITE_SHORT(&custom, bltsize, (16 << 6) | 8);
WRITE_LONG(&custom, bltapt, src1_addr);
WRITE_LONG(&custom, bltdpt, dst1_addr);
WRITE_SHORT(&custom, bltamod, 0x0000);
WRITE_SHORT(&custom, bltdmod, 0x0000);

Simulator result:

Write to blitter register while blitter
active.

By tracking whether or not the blitter busy flag has been polled, the simulator can
detect that there is probably a problem.

28

Software and Services Group
28

“Heavy” simulation

ksim by Kristian Høgsberg

Shim between libdrm and the kernel

About 7kloc

Replicates rasterizer, execution units (mostly), pixel blending,

visibility, etc.

29

Software and Services Group
29

“Heavy” simulation

Kernel / user split already restricts direct hardware access

Hardware commands are marshaled into buffers

Buffers are sent to kernel using ioctls

User-mode software never directly touches hardware

30

Software and Services Group
30

“Heavy” simulation

Kernel / user split already restricts direct hardware access

Simulator catches ioctls in user mode

For most ioctls, marshaled data is sent to a second process

• Uses DRI3 buffer sharing

Simulator process performs request operations, sends data

back

• Exactly as the hardware & kernel would have done!

Show demo of glxgears running in the simulator.

31

Software and Services Group
31

Tips

Start small

• Only simulate or validate the elements you need

Unit test

• Lots of small tests that poke simulator corner cases

Probe corner cases on real hardware

• Even if you have hardware docs, they may be wrong or

incomplete

Support multiple hardware variations

• Give additional feedback for non-portable constructs

Unit testing is critically important. Almost all of the error cases that a validator
detects are corner cases. Unit tests should poke at each of them.

32

Software and Services Group
32

Fringe benefit

By writing and refining your own simulator, you learn a lot about

the real hardware.

Even if you never run any real software through the simulator, you will learn
about the real hardware. Spending time closely examining documentation
looking for undefined or invalid behavior, writing tests to probe corner cases, etc.
is instructive in ways that nothing else can be.

33

Software and Services Group
33

Questions?

34

Software and Services Group
34

Resources

https://github.com/krh/ksim

http://cgit.freedesktop.org/~idr/amiga-sim

Soon, but not quite yet.

35

Software and Services Group
35

Legal Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH
INTEL® PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S TERMS AND
CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO
LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER INTELLECTUAL
PROPERTY RIGHT.

Intel may make changes to specifications, product descriptions, and
plans at any time, without notice.

All dates provided are subject to change without notice.

Intel is a trademark of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2016, Intel Corporation. All rights are protected.

36

Software and Services Group
36

