Effects Framework for
OpenGL Testing

lan Romanick <ian.d.romanick@intel.com>
23-September-2013

QoCIEINE soTECT TR LUK wieeLess | IDNDSMOR] INUX KE

INTEL LINUX GRAPHICS SYNCEVOLUTIONSIMPLE FIRMWARE INTERFACE (SFI) ENTERPRISE SECURITY IN

Agenda

* Why?
* What is an “effect” anyway?
* nvkFX

* |s nvFS useful?

Why?

Why?

uniform mat4x2 arg0;
uniform mat4x2 argl;
uniform float tolerance;
uniform mat4x2 expected;

void main()

{

matd4x2 result = matrixCompMult(arg0, argl);

matd4x2 residual = result - expected;

float error sq = residual[0][0] * residual[0][0] + residual[O0][1]
* residual[0][1l] + residual[l][0] * residual[l][0] + residual[l][1l]
* residual[l][l] + residual[2][0] * residual[2][0] + residual[2][1l]
* residual[2][1l] + residual[3][0] * residual[3][0] + residual[3][1l]
* residual[3][1];

gl FragColor = error sq <= tolerance * tolerance
? vec4(0.0, 1.0, 0.0, 1.0) : vec4(l.0, 0.0, 0.0, 1.0);

Why?

#version 130 float beckmann(float m, float cos_theta)

in vec3 normal es, position es; {

out vec4 color; float c2 = cos_theta * cos_theta;
uniform vec3 light es = vec3(0.0, 15.0, 4.0); m = max(m, le-6);

uniform float m = 0.2; float m c2 = m * c2;

uniform float ri = 1.5; return exp((c2 - 1.0) / (m * m_c2))
uniform vec3 color s = vec3(1.0); / (4.0 * m c2 * m c2);

vec3 (1.0, 0.0, 0.0); }

uniform vec3 color d

float schlick(float ni, float cos_theta) volid main(void)

{

{ vec3 1 = normalize(light es - position es);
float ¢ = 1'0,_ cos_theta;' vec3 v = -normalize(position es); -
float r0 = (ni - 1.0) / (ni + 1.0); vec3 n = normalize(normal esT;
r0 = r0 * ro; vec3 h = normalize(l + v)?
return r0 + (1.0 - r0) * pow(c, 5.0); float ndl = dot(n, 1);

} float ndh = dot(n, h);

float ndv = dot(n, v);

float G(float n_dot_ 1, float n_dot h,
float n_dot_v, float v_dot_h) float f = schlick(ri, ndv) * beckmann(m, ndh)

{ * G(ndl, ndh, ndv, dot(v, h)) / ndv;
float ¢ = 2.0 * n dot h / v_dot h;
return min(1.0, ¢ * min(n_dot v, vec3 spec = £ * color_s;

n dot 1)); vec3 diff = color d * max(ndl, 0.);

color = vec4((spec + diff), 1.0);

Why?

* shader_runner is piglit's mechanism for testing shaders
Really hard to draw anything other than a rectangle
Really hard to get additional per-vertex data to the shader
Really hard to use a non-trival texture
You can use any texture you want, as long as you only want checkerboard or RGBW
Really hard to set other GL state
Difficult to extend
The parser... gives me nightmares.
etc.

Why?

* Holy grail: Easily import shaders from real apps
shader_runner doesn't really help here
There are a couple shader tests like this
apitrace could help
Trace files tend to be quite large
Trace files are difficult to tweak
Want to modify a GL 3.3 test to run on GL ES 3.0
Trace files are difficult to create from scratch
Write an application, then trace it

What is an effect?

* High-level encapsulation of a drawing method
Shader code
Uniform values
GL state settings
Samplers, textures, etc.
Rasterization settings

* An effect may contain multiple passes
Set one shader & parameters, draw, repeat...

What i1s nvFX?

* An effects file format created by Tristan Lorch (NVIDIA)
Inspired by cgFX, but not specific to cg
Open-source library
https://github.com/tlorach/nvFX

* See also:

https://developer.nvidia.com/sites/default/files/akamai/gamedev/docs/nvFX%20A%20New%20Shader-Effect%20Framework.pdf

Search “nvix site:developer.nvidia.com”

https://www.khronos.org/assets/uploads/developers/library/2013-siggraph-opengl-bof/nvFX-effects-framework-OpenGL-BOF_SIGGRAPH-2013.pdf

Search “nvfx site:khronos.org”

https://github.com/tlorach/nvFX
https://developer.nvidia.com/sites/default/files/akamai/gamedev/docs/nvFX%20A%20New%20Shader-Effect%20Framework.pdf
https://www.khronos.org/assets/uploads/developers/library/2013-siggraph-opengl-bof/nvFX-effects-framework-OpenGL-BOF_SIGGRAPH-2013.pdf

nvFX Layout

GLSLShader {// Prepend to all shaders
#version 130
uniform mat4 mvp;
}
GLSShader ObjectVsS {
in vec4 position;
in vec3 normal;
out vec3 normal eye space;
void main() {

}

}
GLSLShader ObjectFS {

}
GLSLShader DiffuseFromTexture {

uniform sampler2D tex;
vecd getDiffuse(vec3 tc) {
return texture(tex,

tc);

SamplerState defaultSampState {
TEXTURE MIN FILTER =
LINEAR MIPMAP LINEAR;
TEXTURE MAG FILTER = LINEAR;

by
TextureResource2D diffuseTexture <
defaultFile = "image.ktx";
> A
SamplerState = defaultSampState;
}

Technique TECH Diffuse ({
Pass p0 {
VertexProgram = ObjectVs;
FragmentProgram = { ObjectFsS,
DiffuseFromTexture };
SamplerResource(tex) =
diffuseTexture;

nvFX Layout

namespace floor {
GLShader VS {

Technique TECH Floor {

Pass p0 {
VertexProgram =
FragmentProgram

}

floor::VS;
floor::FS;

Mixed Versions

GLSLShader common gl {
#version 130

}
GLSLShader common gles ({

#version 300 es

}

GLSLShader foo {

// C++ code has to read the
// annotation and do something smart
// with it.
Technique TECH gl <

GLSL min version = 1.30
> { I

VertexProgram = { common gl,

foo };

}
Technique TECH gles <

GLSL min version = 3.00
> -
VertexProgram = { common gles,
foo };

nvFX Advantages

* More robust language for combining shaders into programs

* More robust language for changing GL state

* Much better mechanism for associating data with vertex attributes
* Multiple passes

* Non-screen render targets
So that effects can render shadow maps, etc.

* Shaders targeting multiple shading languages can live in one place
Sharing shader text across versions is clunky

* Documentation :)

nvFX Disadvantages

* Still requires a lot of C++ code to use

* No direct integration with models

Model files would generally reference effects (by name) that are defined in
the fx files

Sort of the opposite binding order from what we want
* No transform feedback support
* No direct way to verify results of rendered image

* No way to specify effect requirements
Like “GLSL >= 1.30"in shader runner
Annotations may fill this gap

* No Linux or Mac build targets yet
It uses cmake, so it shouldn't be too hard to add...

Can piglit use nvFX?

* Probably not as-is
Not straightforward to replace tests that draw many quads & probe results

No obvious way to supply additional vertex data
Standard set of model files?
We'd probably have to extend their parser

* If apitrace could generate nvFX files...

Can shader runner borrow ideas from nvFX?

* Nice file format
Decent parser, too
Clean syntax for textures and state information

[require]
GL >= 3.0

[£x]

[test]

technique foo

draw rect -1 -1 1 1
probe rgb 10 10 0 1 O

* May provide an eventual migration path to nvFX

INTEL OPEN SOURCE
TECHNOLOGY CENTER

WL Reess S| DN PR INUX KERNEL

SYNCEVOLUTIONSIMPLE FIRMWARE INTERFACE (SFI) ENTERPRISE SECURITY INFRASTRUCTURE

	This is an Example of a Presentation Title Flowing on to Three Lines
	Basic Text
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

