
Stochastic Search-Based Testing for Uniform Block Layouts

Ian Romanick ∗

Abstract

Software testing is a challenging problem. Testing uniform
block layouts for the OpenGL Shading Language in particular
is a testing problem at which the industry as a whole has failed.
Hand-written tests developed by a single person or a small group
of people are unlikely to discover complex cases that encounter
implementation defects. This white paper describes an imple-
mentation of stochastic search-based testing for uniform block
layouts.

1 Introduction

Software testing is, traditionally, a difficult problem. The prob-
lem is typically formulated in one of two ways: ensure that the
software adheres to a specification, assuming there is a specifi-
cation, or find any defects in the software. The first formulation
is generally easier, and often leads to the development of “neg-
ative” tests. These are tests that verify correct errors are raised
for classes of invalid inputs to the system. The second formula-
tion is both more difficult and more interesting. Fully stating the
problem, given a potentially infinite set of inputs, find the inputs
that produce incorrect outputs. The restatement of the second
formulation better illustrates the challenge.

Finding the set of inputs that produce incorrect outputs is more
interesting because users of a software system do not typically
provide invalid inputs to the system in day-to-day use. More
often users provide differing sets of valid inputs. Different users
will use a software system in different ways, and as a software
system ages, trends and best-practices for the system will evolve.
The input space of the software is gradually explored, by users
of the system, through time. As a result, it is not uncommon for
“day one” defects to remain undiscovered until many years of
heavy use have passed.

When a defect is discovered by a user, two treated pieces of
work occur. Software engineers analyze the inputs to determine
the root cause of the failure, and test engineers analyze the inputs
to isolate a minimal set that reproduces the failure. These work
items can occur in either order or at the same time, and on many
projects the software engineer and the test engineer are the same
person.

The minimal set that reproduces the failure is often called the
minimal reproducing case or the minimal test. The minimal test
is extremely valuable from a software maintenance perspective
for several reasons. The minimal test can be included in the soft-
ware’s test suite to both ensure that the defect is not reintroduced
and to track when fixes are applied to maintenance versions of
the software. The minimal test can also be helpful in finding the
root cause of the original failure.

The previous points lead to a interesting conclusion: testing is
a search problem. It is, however, an incredibly difficult search
problem. Consider the set of possible inputs to a programming
language compiler. Any nontrivial programming language is un-
countably infinite. Given two arbitrarily close inputs, one may
result in incorrect output while the other does not. In addition,

∗e-mail: ian.d.romanick@intel.com or idr@freedesktop.org

a failure generated by a large, complex input may also be repro-
duced by a small, simple input. In terms of the original search
problem, the large, complex input is not the desired solution, but
the small, simple input is.

The resulting search problem does not fit well with traditional
search techniques. The input space is infinite, arbitrarily close
inputs may be inside and outside the search set, and not all in-
puts that meet the primary criteria (e.g., produces incorrect out-
put) are in the search set. For traditional search techniques to
work, it generally needs to be possible to measure two inputs to
determine which is closer to the desired set.

Problems of this nature, however, are known in the search com-
munity, and techniques have been developed to solve these prob-
lems. One very well researched technique is randomized search,
which may also be called stochastic optimization. There are a
large variety of techniques, and [Zabinsky 2010] provides a good
survey. One common theme among techniques is the use of ran-
domness to pick either the initial search candidate, a new search
candidate, or both. Additionally, randomized search algorithms
will use a fitness function to evaluate candidates.

It is important to be aware of the trade off made by a randomized
search algorithm. Some optimization problems may have exact
solutions obtainable in exponential time. Many of these prob-
lems can be solved more quickly using randomized techniques.
The quality of the solution, the execution time, or both may only
be bounded with some statistical certainty. Randomized solu-
tions to the traveling sales person problem find a solution close
to the exact solution with high probability in linear time. Ran-
domized variations of QuickSort use worst-case O(n logn) ex-
ecution time with “overwhelming probability” [Mitzenmacher
and Upfal 2005] to perform an exact sort.

Uniform block layouts in the OpenGL Shading Language
(GLSL) is one area in dire need more robust testing across the
industry. The language defines an application binary interface
(ABI) called std140, see page 68 of [Segal and Akeley 2009].
Application developers rightfully expect that a uniform block us-
ing std140 will have idential layout on every implementation.
Applications are coded knowing that each field in a std140
uniform block will have a specific location and organization.
OpenGL implementations must adhere to this ABI. This is, how-
ever, notoriously not the case. One Twitter user proclaimed,
“[Uniform block] introspection with GL: don’t do it kids. Ev-
ery driver has its own way of doing things. std140 layout gives
no guarantees either.1” This sentiment is echoed on various mes-
sage boards around the Internet.

All of the previously mentioned qualities of programming lan-
guages are present in uniform block layouts. To address this
problem, randomized search techniques have been applied to
uniform block testing. The remainder of this paper is divided
into three sections. The method for generating tests is discussed
in section 2. Section 3 presents results already obtained using
the test generator. The paper concludes in section 4 with some
areas of future work.

1https://twitter.com/paniq/status/415102722694606849

https://twitter.com/paniq/status/415102722694606849

2 Random Test Generation

Many random search techniques have already been applied to
software testing, and [McMinn 2004] provides a good, though
perhaps dated, survey as does [McMinn 2011]. The most appli-
cable techniques presented there involve analyzing a specifica-
tion of the possible inputs to the system to automatically gen-
erate test vectors that are likely to generate failures. Creating
such a system is nontrivial. Sufficient experience with uniform
block layout problems exists, and this existing experience was
explicitly embedded in the test generation model.

For the purpose of testing uniform block layouts, a fairly
straightforward multi-start algorithm was selected. Multi-start
algorithms are separated into a global phase and a local phase.
In the global phase a candidate point is selected from the entire
solution space. In the local phase, the neighborhood around the
candidate point selected in the global phase is explored. When
the local phase terminates, a local optimal solution is produced.
The best of all the local optimal solutions is finally selected as
the global optimal solution.

Multiple candidate points selected in the global phase can result
in the same local solution. This is a well known flaw of multi-
start algorithms, and several enhancements have been proposed,
including BRST [Boender et al. 1982] [Wikipedia 2014]. As
will be shown in section 3, this flaw is not a particular concern
for this use.

Multi-start algorithms vary on two fronts. In the global phase,
algorithms vary in the model used to select initial candidates.
Likewise, in the local phase, algorithms vary in the method used
to explore the neighborhood around the global candidate. The
variety of these methods is staggering. [Zabinsky 2010] provides
some background.

2.1 Global Phase

A few areas of uniform block layout support have been observed,
in shipping implementations, to be likely to contain defects.

• Row-major matrix layout qualifiers

• Padding around structures of certain sizes (e.g., less than
16 bytes)

• Nesting of structures inside other structures

• Nesting of arrays inside structures and vice versa

These areas form the basis of the model used to generate the
initial candidate in the global phase. Each initial candidate con-
tains a single uniform block with at least one special member.
The special member is generated by first selecting a matrix lay-
out, which can be one of default, row-major, or column-major,
followed by a nonempty sequence of array or structure. The se-
quence is optionally terminated by a basic GLSL data type. For
example, the sequence “row-major, structure, structure, array,
structure, array, mat2x4” says the uniform block will contain a
row-major decorated structure containing a structure containing
an array of structures containing an array of 2-column-by-4-row
matrices.

Additionally, the top level of the uniform block and each (possi-
bly nested) structure inside the uniform block will be populated
with a random selection of basic GLSL data types. Figure 1 is
an example of the structures and uniform block generated by the
test generator.

2.2 Local Phase

Exploration of the neighborhood around the initial candidate
proceeds in two ways. Some initial exploration occurs imme-
diately. Additional exploration of the neighborhood occurs after
evaluating the initial candidates for fitness.

The initial candidate uniform block is, before any examination
for fitness, modified to generate two additional uniform blocks.
Each of these uniform blocks is intended to have the same layout
as the original, but the layout is specified in a different manner.
The initial uniform block utilizes the global, default column-
major matrix layout. Each of the two modified uniform blocks
inverts this default by either requesting row-major in the uniform
block definition or by requesting row-major at global scope. The
structures and matrices embedded in the uniform block must
therefore have their explicit layouts modified to maintain the
previous layout. Common modifications are from “default” to
column-major and from row-major to “default.”

Additionally, the initial uniform block requests std140 layout
in the uniform block definition. One of the modified uniform
blocks diverges by requesting std140 layout at global scope
and by being declared as an array of blocks.

The test case as a whole is then evaluated for fitness. Unfit tests
(i.e., tests that do not demonstrate a defect) are not explored fur-
ther. These tests are, however, stored for later use. The neigh-
borhood around a fit test is explored by gradually reducing the
test to a minimal test.

A fit, non-minimal test case is pruned by selecting a random
member and either removing it or, if the membmer is any array,
minimizing it. Arrays with more than one element are converted
to any array of a single element, and single element arrays are
converted to non-arrays. When the last member of a structure
or uniform block is removed, the structure and all uses of the
structure or uniform block are removed.

During minimization, a count is kept. Each time a test is succes-
fully reduced (i.e., a member is removed and the test continues
to demonstrate a defect), the counter is reset. Each time a test
is not succesfully reduced, the counter is incremented. Once the
counter reaches a predetermined value,2 the minimization pro-
cess terminates.

A deterministic minimization process was also considered. The
deterministic process would need to remember which elements
had been previously attempted to remove or minimize. The im-
plementation is a collection of simple scripts, and remembering
this information would have been difficult. The randomized pro-
cess likely requires more attempts at minimization and may get
stuck at a local solution. For the purposes of this project, ease of
implementation was deemed more important.

After the automated minimization completes, there are still a
couple simplicifcations that may be performed by hand. For ex-
ample, remaining structures may be demoted to non-structures.
In this case the fields of S4 in figure 2 may be embedded di-
rectly in S5 to produce the structure in figure 3. Additionally,
local row-major or column-major declarations may be pushed
up to the block level.

2100 has been used thus far

s t r u c t S1 {
bvec2 bv1 ;
f l o a t f1 ;
uvec2 uv1 ;

} ;

s t r u c t S2 {
mat4x2 m42 1 ;

} ;

s t r u c t S3 {
S2 s 2 1 ;

} ;

l a y o u t (s t d 1 4 0) uniform UB {
/ / base base a l i g n padded row− a r r a y m a t r i x
/ / a l i g n o f f . o f f . s i z e major s t r i d e s t r i d e

S1 [1] s 1 1 ; / / 16 0 0 32 − 32 −
/ / [0]
/ / bvec2 bv1 8 0 0 8 − − −
/ / f l o a t f 1 4 8 8 4 − − −
/ / uvec2 uv1 8 12 16 8 − − −

S3 s 3 1 ; / / 16 32 32 64 − − −
/ / S2 s 2 1 16 32 32 64 − − −
/ / mat4x2 m42 1 16 32 32 64 no − 16
} ;

Figure 1: Structures and uniform block generated by the test generator

s t r u c t S4 {
f l o a t r ;

} ;

s t r u c t S5 {
S4 s1 ;
f l o a t g ;
f l o a t b ;
f l o a t a ;

} ;

Figure 2: Two structures

s t r u c t S5 {
f l o a t r ;
f l o a t g ;
f l o a t b ;
f l o a t a ;

} ;

Figure 3: S5 with S4 “demoted”

2.3 Test Case Details

Test cases are implemented using the shader-runner functional-
ity of the piglit3 test suite. To implement these tests, shader-
runner was augmented with the ability to probe the layout of
uniform blocks.4

Each generated test has four parts:

• Declaration of all uniform blocks in the vertex shader.

• Probe of selected uniform block members in the vertex
shader.

• Introspection of all API-visible data for all uniform block
members.

• Declaration of data values for all uniform block members.

Shader-runner was additionally modified to allow specification
of floating point values as IEEE 754 formatted hex values.5 The
values specified in the vertex shader and in the uniform block
initialization are bit exact, and the value comparisons are also
bit exact.

The test proceeds by compiling and linking the shaders, probing
the uniform block member layouts, and running the shaders. As
is typical for shader-runner tests in piglit, the shader will draw
green for a passing test or red for a failing test. The colors are
probed by shader-runner, and shader-runner will produce text
output that is easily processed by other tools.

3http://piglit.freedesktop.org/
4http://lists.freedesktop.org/archives/piglit/

2014-September/012510.html
5http://lists.freedesktop.org/archives/piglit/

2014-September/012516.html

http://piglit.freedesktop.org/
http://lists.freedesktop.org/archives/piglit/2014-September/012510.html
http://lists.freedesktop.org/archives/piglit/2014-September/012510.html
http://lists.freedesktop.org/archives/piglit/2014-September/012516.html
http://lists.freedesktop.org/archives/piglit/2014-September/012516.html

3 Results

Testing using the generator began in early September 2014 while
the generator was still under development. Straight out the
gate, the generator was able to detect defects in several shipping
implementations. These early discoveries reinforced the com-
munity knowledge the uniform block support is generally bad
across the industry. It also hampered development of the gener-
ator as it is difficult to determine whether failing test cases were
due to defects in the generator or defects in the implementation.

Two closed-source OpenGL implementations, NVIDIA version
331.89 on a GTX260 and AMD version 13.20.11 on a Radeon
R9 270X, and one open-source OpenGL implementation, Mesa
10.3-devel on Intel HD Graphics 4000, were tested. All tests
were performed on Linux using X Windows. The following de-
fects were discovered:

• Global layout declarations are completely ignored on
NVIDIA.

• Matrix layout qualifiers on structures are not propagated to
matrices inside the structures on NVIDIA.

• Members following structures that are less than 16-
bytes are not properly aligned to a 16-byte boundary on
NVIDIA.

• Non-square matrices with row-major layout are misre-
ported to the API on NVIDIA. Specifically, a 4-column-
by-3-row row-major matrix is reported as 3-column-by-4-
row row-major.

• Block members that are not accessed by any shader stage
are not reported by the API on AMD.6

• Arrays of two-element vectors or scalars do not have 16-
byte stride on AMD.

• Use of a Boolean member as a conditional does not work
on Mesa.7

• Row-major matrices inside arrays of structures are not ac-
cessed properly on Mesa.8

• Uniform block arrays (not arrays in a uniform block) crash
the linker in Mesa.9

• Inside a structure, members following structures that are
less than 16-bytes are not properly aligned to a 16-byte
boundary on Mesa.10 This is a more restricted case of the
previously mentioned NVIDIA defect. The defect case on
NVIDIA works properly on Mesa.

• Members following arrays of structures, where each struc-
ture is larger than 16-bytes but not a multiple of 16-bytes,
are not properly aligned when the uniform block has an
instance name on Mesa.11

• Inside a structure, members that follow a structure con-
taining row-major matrices are not accessed properly on
Mesa.12

6This defect caused almost every test case to fail, and this greatly
hampered testing AMD’s implementation.

7https://bugs.freedesktop.org/show_bug.cgi?id=83468
8https://bugs.freedesktop.org/show_bug.cgi?id=83506
9https://bugs.freedesktop.org/show_bug.cgi?id=83508

10https://bugs.freedesktop.org/show_bug.cgi?id=83533
11https://bugs.freedesktop.org/show_bug.cgi?id=83639
12https://bugs.freedesktop.org/show_bug.cgi?id=83741

At least a few of the defects discovered in Mesa are very specific.
It seems unlikely that even a very savvy test engineer would have
thought to test those cases.

Iteration of the global and local phases continues until a thresh-
old number of minimized, fit test cases are identified. This gen-
erally results in a large number of test cases that reproduce the
same defect. During development of the generator, this often led
to changes in the generator itself. If the discovered defect was
in the generator, the generator would be fixed. If, on the other
hand, the discovered defect was a system problem in the imple-
mentation (e.g., the linker crash in Mesa), the generator would
be modified to not trigger that defect.

In other cases, the defect in the implementation was fixed. The
updated implementation was then expected to pass all of the tests
that previously passed (the unfit test cases) and at least a subset
of the of the tests that previously failed (the minimized, fit test
cases). All of the newly passing tests would then be regrouped
with the other unfit tests.

4 Conclusion

While still not complete, this work has already borne fruit. Many
defects have been found in several OpenGL implementations,
and several of these defects have already been fixed.

There are still areas for future improvement. The test generator
currently only supports GLSL 3.30 with incomplete support for
a couple extensions. GLSL 4.00 and GLSL 4.30 add several
features that increase the complexity of the uniform block layout
rules. All of these features need to be tested as well.

The test generator is also currently limited in the way that arrays
are tested. The primary goal was to test the layout of uniform
blocks. As such, arrays in uniform blocks are always accessed
using a constant index. To better test the implementation’s code
generator, and to better match real-world use of uniform blocks,
it should be possible to generate tests that index arrays dynami-
cally.

Finally, the test generator needs to be better integrated with reg-
ular testing. At the time of writing, only tests that failed at one
time have been integrated into the piglit test suite. Otherwise
the generator has only been used by the author on a small set
of platforms. This ignores the possibility that, for example, the
Mesa driver for an AMD GPU may have defects that do not ex-
ist in the Mesa driver for an Intel GPU or even between different
GPUs from the manufacturer.

The fundamental difficulty in integrating the generator with a
test suite that is regularly run by developers is the potentially
unbounded run time required to find a defect. In a defect-free
implementation, the generator would run forever without dis-
covering a fit test case.

References

BOENDER, C., RINNOOY KAN, A., TIMMER, G., AND
STOUGIE, L. 1982. A stochastic method for global opti-
mization. Mathematical Programming 22, 1, 125–140.

MCMINN, P. 2004. Search-based software test data generation:
A survey. Software Testing, Verification & Reliability 14, 2
(June), 105–156.

MCMINN, P. 2011. Search-based software testing: Past, present
and future. In Proceedings of the 2011 IEEE Fourth Interna-

https://bugs.freedesktop.org/show_bug.cgi?id=83468
https://bugs.freedesktop.org/show_bug.cgi?id=83506
https://bugs.freedesktop.org/show_bug.cgi?id=83508
https://bugs.freedesktop.org/show_bug.cgi?id=83533
https://bugs.freedesktop.org/show_bug.cgi?id=83639
https://bugs.freedesktop.org/show_bug.cgi?id=83741

tional Conference on Software Testing, Verification and Vali-
dation Workshops, IEEE Computer Society, Washington, DC,
USA, ICSTW ’11, 153–163.

MITZENMACHER, M., AND UPFAL, E. 2005. Probability and
computing: Randomized algorithms and probabilistic analy-
sis. Cambridge University Press.

SEGAL, M., AND AKELEY, K. 2009. The OpenGL Graphics
System: A Specification (Version 3.2 (Core Profile)). April.

WIKIPEDIA, 2014. BRST algorithm. http://en.
wikipedia.org/wiki/BRST_algorithm, [Online;
accessed 16-September 2014].

ZABINSKY, Z. B. 2010. Random Search Algorithms. John
Wiley & Sons, Inc.

http://en.wikipedia.org/wiki/BRST_algorithm
http://en.wikipedia.org/wiki/BRST_algorithm

